
TUGboat, Volume 28 (2007), No. 1 5

Software & Tools

TEXML: Resurrecting TEX in the XML world

Oleg Parashchenko

1 Foreword

TEXML is an XML syntax for TEX, LATEX and Con-
TEXt. This definition is extremely correct, but I
dislike its formality. Instead, I prefer the following.

Thanks to TEXML, you can reuse your TEX
skills in the XML world. With TEXML, XML pub-
lishing becomes a case of TEX publishing.

TEXML is a very simple thing. You can learn
it in a minute by looking at the examples in the
section ‘TEXML tour’. But knowing the syntax isn’t
enough.

To feel TEXML, you need to know its past and
future, the ideas behind it, and understand the au-
thor’s intentions. That’s why the technical stuff is
wrapped by the sections with my very subjective
view on the topic of XML publishing.

In the most cases, the words ‘TEX’ and ‘LATEX’
are interchangeable, and they mean also any other
TEX format.

The author is from the XML world. The TEXML
home page is http://getfo.org/texml/.

2 Why XML, not TEX, why TEX, not XML

The best thing about XML is that everyone knows
what it is. XML is ubiquitious now, and especially
in the area of technical documentation. Indeed, its
parent, SGML, was created to support authoring of
technical manuals.

TEX users have different opinions on XML. But
nobody rejects the idea of logical markup is very
obvious and essential. From the high level point of
view, all the markup methods are the same.

What in XML looks like
<environment> ...text... </environment>

in LATEX looks like this:
\begin{environment} ...text... \end{environment}

The only difference is notation. But it’s a very
important difference. Computers prefer XML, hu-
mans prefer LATEX.

Among benefits of logical markup is the pos-
sibility of single source publishing, when the same
source document can be converted to different out-
put formats. XML is the best choice because XML li-
braries exist in any practical programming language.
On the other hand, the only correct TEX parser is
TEX itself, and TEX is locked in its sandbox.

On the other side, the ideal XML world isn’t
ideal. How to get PDF from XML? Theory says
that you would write an XSLT (W3C, 1999) program
which converts XML to XSL-FO (W3C, 2001), and
use an XSL-FO formatter which generates PDF from
XSL-FO.

XML+XSLT→ XSL-FO→ PDF. There are two
issues: first, tools, which is hopefully temporary;
and second, too much automation, which is fatal.

Only a few tools implement XSL-FO in full, and
all these tools are commercial, without open source
alternatives (the best one is FOP, which is under
development), and the W3 Consortium has started
work on XSL-FO 2.0.

But the worst is that the joke ‘automatically’
means you can’t fix it if something goes wrong ap-
plies perfectly to the XSL-FO way. When you need
to tune a generated layout, you’ll find that XSL-FO
level is too low, and editing XSL-FO isn’t much bet-
ter than editing PDF. Also you’ll find that XML and
XSLT levels are too high and editing here smells bad.

The broken layout isn’t a showstopper in LATEX.
Your writings are marked up logically, and when you
need typographical tunings, you just use low-level
primitives.

Time for a short summary:
• XML is good as a markup language,
• TEX is good for publishing documents.

Why not take the best from both worlds? That
is, have sources in XML and publish the documents
through TEX. But how?

3 XML to TEX—how

When converting XML, there is no better alternative
than XSLT. This language is specially designed to
convert XML, is based on experiences with the Lisp-
like DSSSL language, has a large user and expert
base, and has decent support by many tools on many
platforms.

Why not Java, or Perl, or Python, or something
else? Because XML is alien to them. It’s inconve-
nient to use the traditional languages for processing
XML, for either parsing or converting.

For example, in one project the author worked
on a Java application. One procedure was more
than 20 lines in size, debugged and enhanced several
times, and still couldn’t be compared in functional-
ity with a small XPath (a part of XSLT) expression
of several characters.

Worse, the whole library was a partial, poorly
documented, limited re-invention of XSLT. I think
it’s the doom of any program which converts XML.
Instead of using a poor imitation, it’s better to use
XSLT itself.

6 TUGboat, Volume 28 (2007), No. 1

The knowledgeable reader can say that XSLT is
a language to convert from XML to XML, not from
XML to TEX, and ask if XSLT is still so great to
generate TEX.

No, I have to answer, converting XML directly
to TEX is nightmare. XSLT is very weak and unbe-
lievably verbose in working with strings, but that’s
what is required when generating TEX code.

What is expected from a TEX code generator:
• escaping special TEX characters (for example ‘<’

to ‘\<’ or, better, to ‘\textless{}’);
• disjoining ligatures (‘---’ isn’t the long dash in

XML, the long dash is the symbol ‘—’);
• mapping from Unicode characters to LATEX se-

quences;
• avoiding empty lines, which start a new para-

graph in TEX.
And there are common errors when generat-

ing TEX code. (See bug databases for such projects
as db2latex (Casellas and Devenish, 2004), dblatex
(Guillon, 2006) and others.)
• Opening or closing brace is forgotten.
<i>some</i> text
→ {\it some text
instead of {\it some} text.1

• No space after the command name.
{\itsome} text
• Space instead of braces.
here is<i> some</i> text
→ here is{\it some} text
instead of here is{\it{} some} text
If you write a TEX code generator, you should

pay attention to everything. You need accuracy and
patience, and the work isn’t trivial. Therefore you’d
prefer to delegate TEXification from your program to
something else.

TEXML is the best and probably the only can-
didate. You create XML, which is much easier, and
then a TEXML processor converts TEXML to TEX.

Short summary:
• XSLT is the best tool for converting XML to

XML,
• it’s better to delegate TEX code generation.

That’s why we have TEXML, an XML syntax
for TEX/LATEX/ConTEXt. Conversion from XML to
TEX consists of two steps:
• an XSLT program converts XML to TEXML, and
• a TEXML processor converts TEXML to TEX.

TEXML is an XML language with just a few tags,
and converting XML to XML is the specialization of

1 In production we might use \textit{...}, but for illus-
trative purposes here I use {\it ...}.

XSLT; therefore you need only basic knowledge of
XSLT to convert XML to TEX.

4 TEXML tour

The TEXML markup language is minimalistic. Most
of the time, you use only three elements: cmd, env
and group (the other elements are pdf, math, dmath,
ctrl, spec and TeXML).

To get accustomed to TEXML, it’s enough to
learn the examples presented in this section. The
original paper by Douglas Lovell (Lovell, 1999) is
also a good introduction, but it’s out of date. For
a detailed description of contemporary TEXML, con-
sult the TEXML specification (Parashchenko, 2006b).

Installation and usage instructions are on the
TEXML home page: http://getfo.org/texml/. A
pleasant feature is that it’s enough to unpack the
distribution package to use TEXML. The installation
procedure isn’t required, it’s for convenience only.

4.1 Simple TEXML file

An example of a simple TEXML document:
<TeXML>
<TeXML escape="0">
\documentclass[a4paper]{article}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
</TeXML>
<env name="document">
I’m not afraid of the symbols ^,
$, > and others.
</env>
</TeXML>

The result of conversion to TEX is the LATEX
document:
\documentclass[a4paper]{article}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\begin{document}
I’m not afraid of the symbols \^{},
\textdollar{}, \textgreater{} and others.
\end{document}

This example demonstrates:
• the root element is TeXML,
• TEX special symbols are escaped automatically,
• it’s possible to disable escaping.

By the way, while preparing the original LATEX
example, I made two errors:
• ‘\textgreater’ instead of ‘\textgreater{}’

(result—no space after the symbol ‘>’),
• ‘\^’ instead of ‘\^{}’ (result— the circumflex

over the comma instead of the symbol ‘^’).
TEXML saves me from such basic errors.

TUGboat, Volume 28 (2007), No. 1 7

Disabling escaping is not recommended. Usu-
ally it’s a misuse of TEXML. But to keep examples
simple, I do use it for creating the LATEX header.

4.2 More TEXML

This document uses more TEXML elements:
<TeXML>
<cmd name="documentclass">

<opt>a4paper</opt>
<parm>article</parm>

</cmd>
....
<env name="document">

Hello, <group><cmd name="it"/>World</group>!
</env>

</TeXML>

After converting to TEX, the result is:
\documentclass[a4paper]{article}
\begin{document}
Hello, {\it{}World}!
\end{document}

This example demonstrates the three most of-
ten used TEXML elements:
• cmd creates a LATEX command,
• env creates a LATEX environment,
• group creates a LATEX group.

The example also demonstrates how to create
the LATEX header using regular TEXML instead of
disabling escaping.

4.3 Better layout

This example demonstrates how to tune the layout
of a generated LATEX code. The result can be made
indistinguishable from code written by a human.

In the last example, we got the following LATEX
document:
\documentclass[a4paper]{article}
\begin{document}
Hello, {\it{}World}!
\end{document}

A better code layout is:
\documentclass[a4paper]{article}
....
\begin{document}
Hello, {\it World}!
\end{document}

The source TEXML code uses the attributes nl2
and gr to tune the layout:
<TeXML>

<cmd name="documentclass" nl2="1">
<opt>a4paper</opt>
<parm>article</parm>

</cmd>

....
<env name="document">

Hello, <group>
<cmd name="it" gr="0"/>World</group>!

</env>
</TeXML>

4.4 PDF literal strings

Let’s start with the following LATEX code:
\documentclass{article}
\usepackage[T2A]{fontenc}
\usepackage[koi8-r]{inputenc}
\usepackage{hyperref}
\begin{document}
\section{Заголовок (Title)}
Текст (Text)
\end{document}

The code looks fine, but due to the Russian
letters, LATEX raises the errors:
Package hyperref Warning:

Glyph not defined in PD1 encoding,
(hyperref) removing ‘\CYRZ’ on input line 6.

For the document above, the solution is to use
\usepackagep[unicode]{hyperref}

But this solution is not generic. For example,
for CJK text, it fails with some obscure error like:
! Incomplete \ifx; all text was ignored ...

I prefer the universal solution that uses Unicode
strings for the PDF names:
\documentclass{article}
\usepackage[T2A]{fontenc}
\usepackage[koi8-r]{inputenc}
\usepackage[unicode]{hyperref}
\begin{document}
\section{\texorpdfstring{Заголовок (Title)
}{\004\027\004\060\004\063\004\076\004\073
\004\076\004\062\004\076\004\072\000\040\0
00\050\000\124\000\151\000\164\000\154}}
Текст (Text)
\end{document}

Comparing to the previous example, I use
• the option unicode for the package hyperref,
• the command texorpdfstring to assign the

name for the PDF bookmark entry.
The content of texorpdfstring is created by

the TEXML command pdf:
<cmd name="section">

<parm>
<cmd name="texorpdfstring">

<parm>Заголовок (Title)</parm>
<parm><pdf>Заголовок (Title)</pdf></parm>

</cmd>
</parm>

</cmd>

8 TUGboat, Volume 28 (2007), No. 1

4.5 Encodings

Consider TEXML with the Russian letters:
<TeXML>Текст</TeXML>

Default translation to LATEX produces:
\cyrchar\cyrT{}\cyrchar\cyre{}\cyrchar....

The result is correct, but those who speak Rus-
sian prefer to see the real Russian letters instead of
TEX commands.

To achieve this, specify the desired output en-
coding to the TEXML processor using the command
line option --encoding (or -e). When the output
encoding is, for example, koi8-r, the result is:
Текст

4.6 ASCII output

The following LATEX document contains the phrase
‘Hello, World!’ written in Chinese:
\documentclass{article}
\usepackage[encapsulated]{CJK}
\usepackage{ucs}
\usepackage[utf8x]{inputenc}
\begin{document}
\begin{CJK}{UTF8}{cyberbit}
�L�`}�

\end{CJK}
\end{document}

LATEX successfully compiles this document. But
imagine:
• you’ve got a problem with a CJK or other non-

latin document,
• latin documents don’t have this problem, so
• you want to ask for help.

To get help, you should provide a minimal ex-
ample to reproduce the problem. Unfortunately, in
many cases, your non-ASCII text will be corrupted.

Luckily, TEX provides ASCII sequences to en-
code non-ASCII bytes. With the command line flag
--ascii (or -a), the TEXML processor uses ASCII
sequences. For example, the above LATEX document
is written as follows:
\documentclass{article}
\usepackage[encapsulated]{CJK}
\usepackage{ucs}
\usepackage[utf8x]{inputenc}
\begin{document}
\begin{CJK}{UTF8}{cyberbit}
^^e4^^b8^^96^^e7^^95^^8c^^ef^^bc^^8c
^^e4^^bd^^a0^^e5^^a5^^bd^^ef^^bc^^81
\end{CJK}
\end{document}

5 History and other TEXMLs

A long long time ago a company for which I con-
sulted had to switch from XML publishing using

FrameMaker+SGML to a pure XML publishing us-
ing XSL-FO. At the same time, I joined a documen-
tation team for a large open source project. In both
cases, we needed an open source XSL-FO formatter,
and we didn’t find a viable tool.

I had the courage to write my own good open
source XSL-FO processor. The idea was that I could
build it on top of LATEX, and I thought I need only
a converter from XSL-FO to TEX.

The language to use for the converter was ob-
vious to me: XSLT. Quite soon, I found that writ-
ing valid TEX code is hard and unpleasant work.
Instead, I got the bright idea that it’s better to
use an intermediate XML language, and even half-
prototyped it.

At some moment I noticed that I had reinvented
the wheel. Much earlier, Douglas Lovell presented
(Lovell, 1999) his TEXML at the TUG99 conference.
Unfortunately, his TEXMLLatté, a Java implementa-
tion of TEXML, was ‘retired’ and not available for
download.

But the specification survived. I found that it
was very close to my ideas and decided to countinue
with the existing solution. As result, all the old
TEXML documents are still valid and can be pro-
cessed by my tool.

In addition to the original Java TEXML, I found
processors written in Ruby (isn’t available anymore)
and Perl (Houser, 2001). Unfortunately, their status
was ‘works for the author’, but I needed production
quality.

That’s why I started my own TEXML implemen-
tation. The choice of Python was quite arbitrary.
At that time I was learning this language, and I
prefer learning by doing. Now I think it was a for-
tunate choice, as Python is a very good compromise
between popularity and speed of development and
running.

The first version just worked and was without
any advanced features. However, it found its users,
for whom I’m very thankful. The feedback revealed
that the nice layout of the generated TEX code is of
much greater importance than I considered. I ac-
cepted the challenge, and since version 1.1, TEXML
writes human-friendly TEX code.

I presented version 1.1 at a Russian conference
(Parashchenko, 2004b), and I thought that TEXML
development was finished.

Working on a real publishing project, however,
I added more features to TEXML, mostly related to
internationalization support. Meanwhile, I also in-
vestigated how to deal with TEX and XSLT limita-
tions. This activity resulted in the projects sTEXme
(Parashchenko, 2004a) (TEX+Scheme) and XSieve

TUGboat, Volume 28 (2007), No. 1 9

(Parashchenko, 2006c) (XSLT+Scheme), one of the
Google Summer of Code 2005 projects, presented at
the XTech 2006 conference.

TEXML popularity grew, and I started to get
contributions. One of the TEXML users, Paul Trem-
blay, used ConTEXt for publishing. He added Con-
TEXt support to TEXML, reworked bits of TEXML
code and wrote extensive documentation (Tremblay,
2005) on how to imitate XSL-FO constructions in
ConTEXt. That’s a must-read for those who are in-
teresed in the topic.

In June 2006, I collected all the improvements,
rewrote documentation, packed the whole as a usual
Python package and released version 2.0. No bugs
reported till now (March 2007).

6 The TEXML processor: present
and future

At the moment, the only TEXML processor imple-
mentation is written by me in Python. It uses only
few standard modules and therefore is portable and
can be used anywhere if Python is installed.

The core of the TEXML processor is a stand-
alone Python library, therefore TEXML functional-
ity is available to any Python application. It might
be that TEXML is available to Java programs using
JPython and to .NET programs using IronPython,
but checking this has low priority on my long-term
TODO list.

TEXML follows the three-step approach to soft-
ware development: make it work, make it correct,
make it fast. TEXML is currently on the second level,
‘work correct’, so now it’s time to improve perfor-
mance. The processor works much faster than XSLT,
but it can be made an order of magnitude faster yet.

The approach is to use finite automata. The
current code escapes the output stream character
by character. The set of loops, flags and nested con-
ditions adds an overhead to the processing time. By
comparison, with automata the only flags are the
current state, the current character, and the table
of state changes. Overhead per character is mini-
mized.

The second main benefit of automata is that it
would make explicit all the rules how to generate
correct TEX code with nice layout. At the moment,
this knowledge is hidden inside the spaghetti code,
that is hard to maintain and modify.

And I’d like to improve some things. For exam-
ple, the TEXML

<cmd name="command"/><ctrl ch="\"/>

is translated to

\command{}\\

I’d prefer to automatically avoid dummy groups:
\command\\

Yet another benefit of using automata is that
TEXML could be ported to other languages. The
non-trivial TEXML logic, were it written as automata
in some well-known format, such as S-expressions or
XML, could be automatically translated to a code in
any language.

Unfortunately, all these wonderful perspectives
are for the far far future. I’m satisfied with the cur-
rent state of TEXML and prefer to concentrate on
other projects.

Creating automata for TEXML could be a good
master thesis or even a PhD work. If you know
someone who might be interested in this task, don’t
hesitate to mention TEXML.

7 Nice layouts, diff and patch

Probably you’ve noticed how much attention I de-
vote to the nice layout of the generated code. But
what’s the benefit except aesthetic?

Before answering, I’d like to note that aesthetic
appearance is indeed a benefit. You know the say-
ing, ugly things can’t fly. I believe in it. And defi-
nitely, nobody is interested in working with the in-
termediate ugly code which appears in many other
XML-to-PDF-through-LATEX projects.

Automatically generated PDFs can’t be ideal.
From time to time, there are layout faults that you’d
like to fix. To tune these places, you need to edit the
LATEX code. When this code is ugly and bad, you
might prefer to tolerate the faults instead of fixing
them. On the contrary, when the code is human-
friendly, you are likely to look into the code and fix
the problems.

But the main benefit of human-friendly code is
that such code is also diff- and patch-friendly.

Imagine that you’ve fixed all the layout faults
in the LATEX code. Unexpectedly, a proofreader has
updated the source XML. How to generate a new
PDF, both with your and the proofreader’s changes?
The naive user has two alternatives:
• detect what’s changed in XML and repeat the

changes in the LATEX code, or
• re-generate PDF and re-apply layout corrections

in the LATEX code.
Both options are miserable, boring and error-

prone. Open source software developers would pre-
fer a better way using diff and patch.
• Take the initial LATEX file, take the current ver-

sion with the layout fixes, and generate a patch-
file using diff.
• Generate a new PDF from the new XML.

10 TUGboat, Volume 28 (2007), No. 1

• Apply the patch-file to the new LATEX file and
re-generate the PDF.

In most cases, everything goes smoothly and all
the changes, from both you and the proofreader, are
applied.

Thanks to the good LATEX code formatting, as
produced by TEXML, this way is indeed possible.
Instead of saying ‘patch-file’, I prefer to say ‘beauty
memory’. It sounds more appealing and descriptive.

To automate this procedure, I developed Conso-
doc (Parashchenko, 2006a), an XML to PDF pub-
lishing tool on top of TEXML. The user’s guide for
Consodoc is generated by Consodoc itself. Here is
an example of the project file:

import Consodoc
env = Consodoc.default_process(

in_file = ’in/guide.xml’,
in_xslt = ’support/guide.xsl’

)
Depends(’tmp/guide.pdf’, ’support/guide.cls’)

The project file defines that the source XML file
is in/guide.xml, TEXML is generated by the XSLT
program support/guide.xsl, and implicitly defines
that the patch file is in/guide.patch. It also spec-
ifies, explicitly and implicitly, the dependencies of
the files: if a file is changed, than all the dependent
files should be re-generated. To build PDF, just say
on the command line: cdoc.

Consodoc is a very new product, but it is al-
ready usable and successfully passed unit and func-
tional testing. I recommend Consodoc for use in the
production environment by early adopters.

8 Final words

Publishing XML is still a practical problem, even
when the quality of the result isn’t very important.
Different approaches are suggested, from using the
XSL-FO standard to developing a custom solution,
but the Right Thing is still to appear.

The TEXML approach is one of the candidates.
Instead of inventing something new, it smoothly in-
tegrates existing successful technologies and experi-
ence. First, it uses TEX as the typesetting engine.
Second, it uses XSLT as the conversion language.

Third, with the help of the diff and patch
tools, the beauty memory maintains layout correc-
tions of the PDF documents. I’m not aware of any
other XML-to-PDF solution with this feature.

The only TEXML problem is the lack of sam-
ple conversion scripts. But I’ve started work on
the TEXML stylesheets for DocBook, a popular XML
standard for technical books, therefore this problem
will be fixed in the near future.

I expect this union—TEXML, beauty memory
and DocBook TEXML stylesheets—will have a big
impact on XML publishing, causing restoration of
the TEX technologies in the modern XML world.
Join the TEXML movement!

References

W3C. “XSL Transformations (XSLT). Version
1.0. W3C Recommendation 16 November
1999”. See http://www.w3.org/TR/1999/
REC-xslt-19991116, 1999.

W3C. “Extensible Stylesheet Language (XSL).
Version 1.0. W3C Recommendation 15 October
2001”. See http://www.w3.org/TR/2001/
REC-xsl-20011015/, 2001.

Casellas, Ramon, and J. Devenish. “Welcome
to the DB2LATEX XSL Stylesheets”. See
http://db2latex.sourceforge.net/, 2004.

Guillon, Benoît. “DocBook to LATEX/ConTEXt
Publishing”. See http://dblatex.
sourceforge.net/, 2006.

Houser, Chris. “TEXMLapis”. Available from http:
//bluweb.com/us/chouser/proj/texmlapis/,
2001.

Lovell, Douglas. “TEXML: Typesetting XML with
TEX”. TUGboat 20(3), 176–183, 1999.

Parashchenko, Oleg. “sTEXme”. See http:
//stexme.sourceforge.net/, 2004a.

Parashchenko, Oleg. “TEXML: an XML vocabulary
for TEX”. See http://getfo.org/texml/
thesis.html, 2004b. Thesis for the First
International Conference of Open-Source
Developers, Obninsk, Russia.

Parashchenko, Oleg. “Consodoc publishing
server: XML to beautiful documents”. See
http://consodoc.com/, 2006a.

Parashchenko, Oleg. “TEXML specification”. See
http://getfo.org/texml/spec.html, 2006b.

Parashchenko, Oleg. “XSieve: extending
XSLT with the roots of XSLT”. See http:
//xmlhack.ru/protva/xtech2006-paper.pdf,
2006c. XTech 2006: Building Web 2.0, 16-19
May 2006, Amsterdam, The Netherlands.

Tremblay, Paul. “Welcome to context-xml”. See
http://getfo.org/context_xml/, 2005.

� Oleg Parashchenko
Saint-Petersburg State University,
7-9, Universitetskaya nab,
Saint-Petersburg, Russia
olpa (at) uucode dot com
http://uucode.com/

